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G T I I D I "  EQUATIONS FOR QUASI-OPTIMUM 

By D. J. Jezewski 

SPACE MANEWERS 

SUMMARY 

Approximate time-optimum guidance equations f o r  planetary ascent and de- 
scent t r a j e c t o r i e s  at constant thrust are derived f o r  a flat-body two- 
dimensional case. No aerodynamic forces  are considered. I n  addition, t h i s  
case w a s  extended by introducing power series t o  simulate t h e  deleted terms 
of t h e  round-body solut ion.  A power series i n  t i m e  w a s  chosen t o  r e t a i n  t h e  
form of t h e  guidance l a w .  The re su l t i ng  transcendental  equations are not ex- 
p l i c i t  i n  t h e  control  variables; hence an iterative scheme i s  used t o  solve . 

@ t h e  conditioned equations f o r  t h e  required control .  

Trajector ies  r e su l t i ng  from t h i s  s e t  of equations are compared with t h e  
s t r i c t  optimum f o r  a number of cases t o  determine t h e  proximity of t h e  solu- 
t i o n s .  The r e s u l t s  match w e l l  f o r  both state and control  var iables  i n  t h e  
cases considered. 

The guidance appl icat ion w a s  invest igated by using t h e  ana ly t ic  solut ion 
t o  s t e e r  an exact in tegra ted  model. A comparison of these r e s u l t s  with an 
optimum solu t ion  f o r  ascent and descent t r a j e c t o r i e s  shows good agreement. 

To demonstrate i t s  u t i l i t y  as a t r a j e c t o r y  scanner, t h e  technique i s  ap- 
p l i ed  t o  t h e  inves t iga t ion  of lunar  landing from an e l l i p t i c  t r a n s f e r  o r b i t .  

IRI'RODUCTION 

The requirement f o r  optimum t r a j e c t o r i e s  i n  preliminary design work has 
s t ead i ly  increased i n  t h e  past  few years .  The chief de te r ren t  t o  t h e  solut ion 
of t h e  nonlinear d i f f e r e n t i a l  equations has been t h e  lack  of a process which 
would converge rap id ly  t o  t h e  desired boundasy conditions.  The f i r s t -o rde r  
per turbat ion techniques used i n  convergence processes normally work wel l  i n  
t h e  v i c i n i t y  of t he  so lu t ion  where t h e  l i n e a r i t y  assumption holds t rue ,  but 
they are usual ly  unpredictable i n  areas not near t h e  solut ion.  These, unfor- 
tunately,  me t h e  areas most f requent ly  encountered. 

A n  ana ly t i ca l  scheme which provides reasonable approximations t o  t h e  
optimum solu t ion  would be of s ign i f i can t  value, f irst ,  as a scanning technique 
f o r  providing rapid estimates of optimum performance and, second, as a method 
of determining approximate i n i t i a l  values f o r  t h e  t r u e  optimum solut ion.  The 
use of such a technique as a guidance scheme a l s o  has p o s s i b i l i t i e s  i f  t h e  so- 
l u t i o n  time i s  not unreasonable and i f  t h e  e r r o r s  generated by t h e  approxima- 
t i o n s  t o  t h e  t r u e  dynamic equations a r e  not excessive. 



The present paper deals with an ana ly t i ca l  technique derived by operating 
on a set of l i nea r i zed  two-body equations with t h e  calculus of var ia t ions  t o  
determine a guidance l a w .  The planar case, i n  which aerodynamic forces  are 
neglected, i s  treated. The so lu t ion  d i f f e r s  f r o m t h a t  derived i n  reference 1, 
i n  t h a t  f o r  t h e  present paper a constant t h r u s t  r a the r  than a constant accel-  
e r a t ion  i s  assumed. The equations are first reduced t o  a flat-body set by 
allowing t h e  radius  t o  approach i n f i n i t y .  By integrat ion,  t h ree  simultaneous 
transcendental  equations i n  th ree  unknowns can be derived from t h i s  set of 
equations. Tra jec tor ies  r e su l t i ng  from t h i s  set are compared with optimum 
t r a j e c t o r i e s  t o  determine what e r ro r s  are present and which terms, deleted by 
t h e  flat-body approximation, are the pr inc ipa l  contr ibutors  t o  the  e r r o r .  
Sui table  approximate expressions are introduced t o  t h e  flat-bcdy set of equa- 
t i o n s  t o  simulate t h e  deleted terms i n  an attempt t o  reduce these  e r ro r s .  The 
equations are again integrated,  and the r e s u l t s  are compared w i t h  t h e  optimum 
f o r  a number of t r a j e c t o r i e s .  The scheme i s  tested as a guidance technique by 
using t h e  ana ly t ic  so lu t ion  as a feedback t o  t h e  exact in tegra ted  model t o  de- 
termine t h e  speed of so lu t ion  and t h e  penalty incurred as compared with the 
opt i m w n  . 

SYMBOLS 

A 

a 
i j  

a v, “u 

constant defined by equation (20) 

coef f ic ien ts  of t i m e  s e r i e s  

elements of p a r t i a l  matrix 

components of accelerat ion defined by equations (24) and ( 2 5 ) ,  

f t / s e c  2 

i n i t i a l  values of Lagrange mul t ip l ie rs ,  radians/sec 

e f f ec t ive  exhaust veloci ty ,  f t / s e c  

transcendental  functions 

function defined by equation (Al) 

function defined by equation (A2) 

grav i t a t iona l  acceleration, f t / s e c  

modified Hamiltonian 

coef f ic ien ts  of time series 
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b r 

T 
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u,v 

v 

vC 

W 

XJ Y 

YS 

Z 

5, “2 

r 
at 
av 

performance index 

spec i f i c  impulse, sec  

constant defined by equations (22) and (23) 

funct ion defined by equation (21) 

boundary vector  constraint  

m a s s  of vehicle,  slugs 

functions of t i m e  

functions of t i m e  

s t a t e  vector 

radius  t o  vehicle  from center of body, f t  

radius  of t h e  reference body, f t  

t h rus t ,  l b  

time, sec  

components of t o t a l  ve loc i ty  i n  x and y direct ions,  
respectively,  f t / s e c  

t o t a l  veloci ty ,  f t / s e c  

cha rac t e r i s t i c  veloci ty ,  f t / s e c  

weight of vehicle,  l b  

ro t a t ing  coordinates of m a s s  pa r t i c l e ,  f t  

dis tance from o r ig in  t o  surface of body, f t  

tangent of 8 

functions defined by equations (19) and (181, respect ively 

f l igh t -pa th  angle, deg 

increment of time, sec  

change i n  t o t a l  veloci ty ,  f t / s e c  
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change i n  cha rac t e r i s t i c  velocity,  f t / s e c  

tolerance on time-to-go 

e 

tolerance on i n i t i a l  p i t ch  angle 

tolerance on f i n a l  p i t ch  angle 

t r u e  anomaly 

0 

3 t )  control  vector  

hl,h2,h3,Ak Lagrange mult ipl ier ,  radians/sec 

p i t ch  angle, deg, or  t h r u s t  angle with respect t o  x-axis, 
radians 

normalized m a s s  ra t io ,  m m 
P 1 0  

U constant Lagrange mul t ip l ie r  

01, 02, %j functions defined by equations (C24) , (C23) ,  and (C26) , 
respect ively 

i n i t i a l  t h r u s t  acceleration, T/mo, f t / s ec  2 
'p 

functions defined by equations ( 3 6 )  and (C27) ,  respect ively $1, $3 

Subscripts : 

0,1 i n i t i a l  and f i n a l  values of state and control  var iables  

A ana ly t i c  quantity 

I 

i, j 

m 

min 

integrated quantity 

p a r t i a l  der ivat ive indices 

order of correction 

minimum 

n nth order term of t i m e  series 

c 
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Superscript  : 

T transpose 

Operators ; 

( ' 1  
1 

time d i f f e ren ta t ion  

va r i a t iona l  ope rat o r  

FOFNULATION OF THE PROBLEM 

The mathematical model employed i n  t h i s  inves t iga t ion  i s  a m a s s  p a r t i c l e  
with two degrees of freedom refer red  t o  a set of ro t a t ing  coordinates with 
t h e  x-axis a l ined  along t h e  l o c a l  horizon. The axis system and the  associated 
notat ion are i l l u s t r a t e d  i n  f igu re  1. 

The equations of motion f o r  t h i s  model a r e  

where 

x = u  

y = v  

= Q m o  

r = r  
b - 's 
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Figure 1.- Coordinate system and angle de f in i t i on .  

The vehicle  i s  assumed t o  have a constant t h r u s t  and mass flow rate. The 
angle 0 i s  t h e  control  var iab le .  

The f i n a l  time w a s  selected t o  be minimized s ince under t h e  pre- 

viously mentioned assumptions it w i l l  y i e l d  minimum f u e l  consumption. 

If i n  equations ( 3 ) ,  (4), and (71, rb i s  allowed t o  approach i n f i n i t y ,  

t h e  coupling effects vanish and t h e  g rav i t a t iona l  accelerat ion approaches i t s  
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surface value go. The following f la t  body equations r e su l t :  

x = u  

y = v  

( 9 )  

The following pitch-angle r e l a t ionsh ip  ( ref .  1) is  obtained when t h e  
calculus of var ia t ions  i s  applied t o  t h i s  s e t  of equations and t h e  f i n a l  range 
i s  allowed t o  be free. 

c4 - c2t 

3 C t a n  8 = 

The der ivat ion of t he  guidance l a w  (eq.  (IS)) i s  given i n  appendix A. 

The so lu t ion  i s  now e n t i r e l y  specified,  because when t h e  constants 

C,/C3 and C4/C3 are given, t h e  control  var iab le  i s  specified; and 

equations (9) t o  (12) may be in tegra ted  t o  y i e ld  a solut ion.  To determine 
a unique solution, t h e  constants C must be found as  functions of t he  de- 
s i r e d  boundary conditions.  This r e s u l t  i s  accomplished by in tegra t ing  
equations (9)  t o  (12) between t h e  bounds specif ied a t  t = 0 and t = t 
The constants C4/C3 and C,/Cj a r e  obtained by evaluating equa- 

t i o n  (13) at t h e  boundaries and y i e ld  

1' 

3 

- -  - t a n  eo c4 
3 C 

C2 t a n  eo - t a n  

C 
- -  - 

3 

1' where O(0)  = eo and e(t ,)  = 8 

In tegra t ion  of equations (9) t o  (12) r e s u l t s  i n  t h e  following th ree  s i m -  
ultaneous transcendental  equations i n  t h e  th ree  unknowns eo, el, and tl. 
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The in tegra t ions  and associated transformations are indicated i n  appendix B. 
I n  equations (1.5) t o  (17), 

( 18) 
itl 

a =  2 ( t an  el - t a n  eo) 

a,.,- = 1 - a2 t a n  eo  

2 2 
2 

k = a  i - a  1 

Because the control  quant i t ies  tl, eo, and occur imp l i c i t l y  i n  t h i s  

equations are transcendental ,  a f i r s t - o r d e r  per turbat ion technique (ref.  2) i s  
u t i l i z e d  t o  force t h e  solut ion t o  converge. This technique, which generates a 
partial matrix, assumes t h a t  a so lu t ion  e x i s t s  i f  t h e  matrix of p a r t i a l s  has 

8 

. s e t  of equations, it i s  impossible t o  solve f o r  them d i r e c t l y .  Since t h e  



an inverse.  
matrix a re  given i n  appendix C. 

This convergence technique and t h e  associated p a r t i a l  der ivat ive 

Figures 2(a)  and 2(b) i l l u s t r a t e  t h e  e r rors  of t h i s  solut ion as compared 
with an optimum integrated round body f o r  d i f f e ren t  values of t he  constant 

It should be noted t h a t  the  e r rors  generally decrease with increasing 

This follows log ica l ly  s ince burning time tl a(T/Wo)-I and the  surface in te -  

grated over approaches a f l a t  body as the  burning time approaches zero. 

go. 
T/Wo. 

The question of what can be done t o  improve t h i s  solut ion ( indicated i n  

Certainly, t he  e r rors  are t h e  r e s u l t  of neglecting t h e  cross- 
f i g s .  2 (a)  and 2(b) )  without destroying t h e  ana ly t ic  propert ies  of t he  problem 
i s  now posed. 
coupling e f f ec t s  end s e t t i n g  g equal t o  a constant. 

NASA-S-64-285 
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(a) Character is t ic  veloci ty  e r ro r .  

Figure 2.- Flat-body e r ro r  for a launch t o  lunar  o r b i t .  I = 420 sec. 
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0 .I .2 .3 .4 .5 .6 .7 .8 1 .o 
In i t ia l  thrust - to -we ight  ratio, T h o  

(b) Initial pitch angle error. 

Figure 2.- Concluded. 

Figures 3(a) and 3(b) illustrate time histories of the terms 

a U = uv/r (24) 

( 2 5 )  
2 a v = - g + u / r  

for an optimum launch to lunar orbit as compared with those of the flat-body 
approximations. The displacement between the curves in figures 3(a) and 3(b) 
represents the horizontal and normal acceleration errors of the flat-body 

.approximation and amounts to a maximum of 5.5 ft/sec for the normal component 

at the terminal point. The horizontal acceleration term a for optimum time 

descents or ascents from orbit can be considered to have only a second-order 
effect. For the case illustrated, a launch to lunar orbit, the maximum value 

2 

U 
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Figure 3.-  Comparison of so lu t ion  obtained by using ana ly t ic  and exact solu- 
t i o n s  for launch t o  lunar  o r b i t .  T/Wo = 0.6; I = 313.0 sec. 
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Figure 3 .  - Concluded. 

2 of t h i s  term amounts t o  less than 0.2 f t / s e c  . 
accounts f o r  t he  l a r g e s t  port ion of t he  observed e r ro r .  

Therefore, t h e  quant i ty  a 
V 

To o f f s e t  t he  errors ,  functions a r e  defined i n  t h e  form 

12 

a U = 2 hn+l tn 
n=O I 



2 

a = C a  v ni-1 t n  

n=O 

which have t h e  same values as t h e  functions def-ned i n  equations (24) and (25) 
at t h e  two bounds. The introduct ion of a function a = av(q), where q i s  
any of t h e  dependent var iables ,  would necessar i ly  complicate ( i f  not completely 
destroy) t h e  guidance l a w  s t a t e d  i n  equation (13). 
able  because it w i l l  not a l ter  t h e  guidance l a w  but w i l l  change t h e  t rans-  
v e r s a l i t y  condition of t h e  calculus of var ia t ions .  

V 

A time s e r i e s  i s  accept- 

Based on t h i s  analysis,  equations (1) t o  (4) are 

where, from equation (13), 

x = u  

y = v  

n=O 

2 

J t a n  e = z 

In tegra t ing  these  equations as out l ined i n  appendix B r e s u l t s  i n  t h e  
following three simultaneous transcendental  equations. 
of these  equations is  out l ined i n  appendix C. 

The method of so lu t ion  



I I I I 11111lll11111l1 IIIII 1111l IIIIIIII 

n=O 

* 2  
PJ 

where 

)I = O  (35) - IQ"% (. - uo + q1 + Ka 2 (Sec e 0 - h 1 

n=O 

The required number and t h e  evaluation of coef f ic ien ts  t o  simulate su f f i -  
c i e n t l y  t h e  optimum round body t r a j e c t o r i e s  must be determined. 
t h e  problem i s  reduced t o  a f l a t  body i f  only t h e  
and t h e  coef f ic ien t  h l  i s  chosen t o  be 0. Consider a case where t h e  con- 
t r o l  program f o r  t h e  in tegra ted  and the  ana ly t i c  solut ions are i d e n t i c a l  i n  
time. A s  higher order terms i n  n a r e  introduced t o  the  flat-body solution, 
t h e  instantaneous accelerat ions and hence t h e  state var iab les  of t h e  ana ly t i c  
model would necessar i ly  converge t o  those of t h e  in tegra ted  so lu t ion .  If t h e  
control  program of t h e  ana ly t ic  model (eq. 13) i s  considered an off-nominal 
solution, t he  above qua l i t a t ive  argument implies t h e  following general izat ion.  
The degree of success i n  u t i l i z i n g  t h i s  ana ly t i c  technique t o  simulate optimum 
t r a j e c t o r i e s  depends on the  success i n  simulating t h e  deleted accelerat ions of 
t h e  f l a t  body with power s e r i e s  i n  time. 

Obriously, 
n = 0 term i s  re ta ined  

For a case of launch t o  lunar  o r b i t  ( f i g s .  3(a) and 3 (b ) ) ,  it i s  apparent 
t h a t  t h e  polynomials must be at a minimum cubics and ce r t a in ly  of higher order 
i f  grea te r  accuracy i s  desired.  This minimum solu t ion  necess i ta tes  four  co- 
e f f i c i e n t s .  The results of using t h i s  t runcated s e r i e s  t o  simulate t h e  deleted 
accelerat ions of t h e  round body a r e  indicated i n  f igures  3(a) and 3 (b ) .  
w a s  s t a t ed  above, two values of a and a (eqs.  (24) and (25))  are known, 

by t h e i r  evaluation a t  t = 0 and t = t Two more solut ions are required t o  

evaluate t h e  four coeff ic ients  of each series. It i s  apparent t h a t  once t h e  

t r a j e c t o r y  progresses beyond a f e w  in t eg ra t ion  s teps  i n  a guidance problem, 

As 
U v 

1' 



t he  past h i s to ry  of t he  dependent var iab les  w i l l  y i e l d  t h e  required two addi- 
t i o n a l  solut ions.  A t  t h e  i n i t i a t i o n  of t h e  t ra jec tory ,  t h e  following technique 
i s  used t o  evaluate t h e  unknown coef f ic ien ts .  The der ivat ives  of equa- 
t i o n s  (24) and (25) with respect  t o  t i m e  are 

a =  v 

These equations and equations 

\ r 

(1) t o  (8) are in tegra ted  e i t h e r  backward or 

( 37) 

. -  . -  
forward i n  t i m e  twice by a s m a l l  increment 
e f f i c i e n t  i n  equations (26) and ( 2 7 ) .  
e r ro r ,  t h e  magnitude being proportional t o  the uncertainty i n  t h e  p i t ch  angle 
8 a t  t = 0. This e r r o r  i n  t h e  coef f ic ien ts  i s  reduced by cycling through 
t h e  algebraic  equations and in tegra t ions  u n t i l  t h e  coef f ic ien ts  converge t o  a 
set of values consis tent  with t h e  computed value of t h e  p i t ch  angle. 

A t  t o  def ine t h e  addi t iona l  co- 
These two solut ions w i l l  contain an 

RESULTS AND DISCUSSION 

Examples of r e s u l t s  using t h e  equations derived i n  t h i s  report  a r e  shown 
A n  i n  an attempt t o  ind ica te  t h e  broad usage t o  which t h i s  analysis  appl ies .  

IBM type 1620 e lec t ronic  da ta  processing machine w a s  used f o r  the  computations; 
t h e  so lu t ion  time f o r  a t y p i c a l  boundary-value problem, as a launch t o  -orbit  
or landing, w a s  approximately 2 minutes and required f i v e  or  s i x  i t e r a t i o n s  t o  
obtain five-decimal-place accuracy. Guidance problems, of course, ran much 
longer on t h e  machine s ince they consisted of a s e r i e s  of boundary-value prob- 
lems, and convergence of so lu t ion  w a s  slow when "time-to-go" became s m a l l .  
Therefore, an open-loop system had t o  be used f o r  t h e  las t  portion of t h e  tra- 
jectory.  

Guidance Tra jec tor ies  

The accuracy of guided solut ions i n  simulating the  s t r i c t  optimum i s  

I n  these  solutions,  t h e  t r u e  dynamic equations were in tegra ted  a t  a 
indicated i n  f igures  4 t o  6, and terminal  values are presented i n  t ab le s  I t o  
111. 
s t e p  i n t e r v a l  of 10 seconds, and t h e  ana ly t i c  so lu t ion  w a s  used as a feedback 
control .  

Figures 4(a) t o  4(d) are t ime-history comparisons of t h e  s t a t e  and control 
var iab les  f o r  t h e  guided ana ly t i c  so lu t ion  with t h e  optimum f o r  a launch t o  
lunar  o r b i t .  Table I ind ica tes  t h e  numerical differences a t  the  boundary. 
This t r a j e c t o r y  required t h e  use of an open-loop system a t  a time-to-go of 
approximately 9 seconds. The l a r g e s t  apparent deviat ion i n  these  curves i s  
i n  t h e  p i t ch  angle, where the re  appears t o  be as much d i f f e r e n t i a l  area above 
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as below t h e  optimum. 
closeness of t h e  f i n a l  values of t i m e  indicated i n  table I. It can be ob- 
served by examining these  curves t h a t  t h e  ana ly t i c  technique has a l i n e a r i z i n g  
e f f e c t  on t h e  so lu t ion .  This appears t o  be a general  cha rac t e r i s t i c  of t h e  
ana ly t i c  technique. 

This apparent canceling is t h e  probable cause of t h e  

tl, sec  . . . . . .  
€Io, deg . . . . . .  

TABm 1.- LAUNCH TO LUNAR ORBIT 

= 0.6; I = 315 sec; yo = 1,000 f’t; vo = 100 f t /sec;  yo = go0] 
SP 

227.92 

27.68 

1 Optimum, in tegra ted  

yl, f t  . . . . . .  
vl, f t / s e c  . . . .  

49,958 

5,606 7 

f t / s ec  . . .  .I 5,775 3 

r7, deg . . . . . .  I 0.00084 
I 

x f t . . . . . .  1 564,573 1.’ 
I 

Analytic, guided 

228.87 

26.68 

-8.77 

5,807 9 

49,962 

5, 601 -9 

0.00527 

567,082 

Figures ?(a) t o  5(d) are t h e  time-history comparisons f o r  a guided landing 
from lunar  o r b i t .  Numerical results are presented i n  table 11. Optimum re t ro-  
grade solut ions a re  extremely sens i t i ve  t o  i n i t i a l  conditions when solved by 
in tegra t ing  t h e  dynamic and mer-Lagrange equations forward i n  time. There- 
fore,  t h e  landing from lunar  o r b i t  required a backward in tegra t ion  i n  t i m e  t o  
obtain a solut ion.  This, i n  turn,  required a weight correct ion t o  e s t ab l i sh  
t h e  correct  i n i t i a l  T h o  when the  so lu t ion  converged. These d i f f i c u l t i e s  

were avoided i n  t h e  ana ly t ic  so lu t ion  by solving t h e  retrograde problem i n  
t h e  forward sense, and only t h e  previously mentioned d i f f i c u l t i e s  w e r e  en- 
countered. 
mately 10 seconds. 

An open-loop so lu t ion  was  i n i t i a t e d  a t  a time-to-go of approxi- 
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T A B U  I1 .- L&\JDING FROM LUNAR ORBIT 

= 50,000 ft; v0 = 5674.5; yo = 0" YO 1 I./tWo = 0.4; I = 315 sec; 
SP 

tl, sec  . . . . . .  
eo, deg . . . . . .  

vc.' 

€I1, deg . . . . . .  
ft/sec . . . .  
ft . . . . . .  YlJ 

v ft/sec . . . .  1' 
yl, deg . . . . . .  
x f t . . . . . .  1' 

Optimum, integrated 

290.02 

181.87 

163.23 

4,658.9 

15,000. o 

1,113.2 

-11.13 

1,019,285 

Analytic, guided 

290.92 

182.93 

16k.28 

4,677 .o 
14,998.8 

1,114.3 

-11.07 

1,022,944 
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Figures 6(a) t o  6(d) a re  t h e  time-history comparisons f o r  a guided in- 
s e r t i on  i n t o  a c i r cu la r  ea r th  parking o rb i t .  Table I11 presents t he  numerical 
results at the  boundary. I n  t h i s  t ra jec tory ,  ve loc i ty  t o  be gained ra ther  
than time-to-go was t h e  terminating c r i t e r i a .  This necessi ta ted thrus t ing  f o r  
an addi t ional  0.13 second t o  meet t he  desired end conditions. 
t he  terminal boundary condition i s  readi ly  apparent i n  f igure  6(d) where it i s  
observed t h a t  the  p i tch  angle rapidly changes value.  

This s h i f t  i n  
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Figure 6.- Opt imum inser t ion  in to  a c i r cu la r  ea&h o r b i t .  
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Figure 6. - Concluded. 

TKBL€C 111.- INSERTION I r JTO A CIRCULAR EARTH ORBIT 

yo = 22.2’ [T/Wo = 0.751; I = 420 sec; yo = 181,500 f t ;  vo = 8,750 f t /sec;  I SP 

s e c . .  . . . .  
d e g . .  . . . .  
d e g . .  . . . .  
ft/sec . . . .  
f t  . . . . . .  
ft/sec . . . .  
d e g . .  . . . .  
f t  . . . . . .  

Optimum, in tegra ted  

417.15 

33.73 

4.04 

18,537 

600,932 

25,570 

0.0000 

5,929,025 

Analytic, guided 
~ 

419.07 

32.21 

1.38 

18,733 

600,930 

25,570 

- 0.0004 

5,960,834 
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Trajectory Scanner 

Figure 7 ind ica tes  a parametric study i n  T/w0 of landings from 

posi t ions off pericynthion. 

changes i n  t h e  t r u e  anomaly angle are presented i n  t a b l e  I V .  

i n t e r e s t  i n  t h i s  curve i s  t h e  s m a l l  penalty loss  i n  performance f o r  a wide 

va r i a t ion  i n  t h e  t r u e  anomaly angle 7 .  For instance,  i n  t h e  case of 

T/Wo = 0.4, a penalty loss  of AVc = 10 f t / s e c  

of approximately 50". 

AVc 
only a s m a l l  penalty i n  performance. 

The state var iab les  and performance da ta  f o r  

A point of 

r e s u l t s  f o r  a range of 

For reasonable values of T/WO, t h i s  small loss i n  

ind ica tes  t h a t  lunar  landings may be i n i t i a t e d  from a wide range with 
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-46.1 
-40.6 
-35 *1 
-29.6 

-18.6 
-13.0 

-24.1 

.86 
14 75 

TABU 1V.- LANDINGS FROM POSITIONS OFF PERICYNTHION 

O 0 1  
= 1,000 f t ;  v, = 100 f t /sec;  r, = 

L 

V, rt/sec 

5,524 6 
5,537 01 
5,548 3 
5,558.1 
5,566 04 
5,573 01 
5, 578.1 
5,583.0 
5,576.7 

-1.5472 
-1 3949 
-1.2298 
-1.0534 
- e8677 

- ,4757 
0315 

.5280 

- .6745 

112,724 
99,229 
87,157 
76,626 
67,738 
60,581 
55,225 
50, 024 

56, 693 - 

I 

6 
T h o  = 0.5 

3,808.4 
5,804.3 
5, 801 9 7 
5,800.2 
5, 799 3 
5,798 8 
5,798 0 

5,798 3 
5, 801 3 

I 

, f t / s e c  

T h o  

5,747.3 
5,736 .I 
5, 728.3 
5,723.2 
5,720.1 
5,718.3 
5,717- 5 
5,718.9 
5,  727 8 

-I 

5,752 2 

5,73095 
5,714.7 
5, 703 8 
5,696.6 
5, 692 3 
5,690 .I 
5,691 *9 
5,707 1 

CONCLUDING RENARKS 

Quasi-optimum guidance equations i n  two dimensions f o r  which constant 
t h r u s t  was  used have been ana ly t i ca l ly  derived by t h e  calculus of var ia t ions .  
The basis of t h e  analysis  i s  t h e  ana ly t i ca l  so lu t ion  t o  t h e  flat-body prob- 
l e m  which i s  extended t o  simulate a round body by the addi t ion of power series 
i n  t i m e .  
been generated by using an iterative convergence technique. 

Numerical solut ions t o  t h e  r e su l t i ng  t ranscendental  equations have 

Guided t r a j e c t o r i e s  were examined f o r  a landing on and launch from t h e  
lunar  surface and f o r  an in se r t ion  i n t o  e a r t h  o r b i t .  The r e su l t i ng  curves f o r  
t h e  control  and state variables agree c lose ly  with t h e  t r u e  optimum and pro- 
duce solut ions which are more l i n e a r  than  t h e  exact curves. The t r a j e c t o r i e s  
show losses  i n  cha rac t e r i s t i c  ve loc i ty  of 0.564 percent f o r  t h e  lunar  launch, 
0.389 percent f o r  t h e  lunas landing, and 1.057 percent f o r  t h e  in se r t ion  i n t o  
ea r th  o r b i t .  
r a the r  than on time-to-go which had t h e  e f f e c t  of increasing t h e  th rus t ing  a r c .  

This last  t r a j e c t o r y  had a terminating c r i t e r i a  on ve loc i ty  

Manned Spacecraft Center, 
National Aeronautics and Space Administration, 

Houston, Texas, February 25, 1964 
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APPENDIX A 

OPTIMUM SOLUTION WITH FUNCTIONS OF THE STATE VARIABLES PF33SCRIBED AT A 

V A R I U L X  TEFNINAL TIME, INCLUDING M I N I M U M  TIME PROCESSES 

The material contained i n  t h i s  appendix w a s  taken from a l e c t u r e  s e r i e s  on 
optimization of dynamic systems a t  Hsrvard University i n  1963. 

Given a system of f i r s t - o r d e r  d i f f e r e n t i a l  equations of t h e  form 

where ;(t) and e”(t) a re  t h e  s t a t e  and control vectors, respec t ive ly .  It 
i s  desired t o  minimize some performance index of t h e  Mayer form 

Certain boundary conditions a re  desired of t h e  form 

The performance index and t h e  boundary conditions adjoined t o  t h e  cons t ra in t  
re la t ionships  (eq.  (Al)) with Lagrange mul t ip l ie rs  produce t h e  i n t e g r a l  

--f where u are constant Lagrange mult ipl iers  and t h e  superscr ip t  T r e f e r s  t o  
the  transpose matrix. 

The modified Hamiltonian i s  defined as 

The d i f f e r e n t i a l  of ( A b )  taking i n t o  account d i f f e r e n t i a l  changes i n  t h e  t e r -  
minal t i m e  tl i s  

I 



t- r 1 

-I O L  

Integrat ing by parts and using 

The Lagrange mul t ip l ie rs  are chosen such t h a t  t h e  coef f ic ien ts  of 6g 
dz(tl) ,  and dtl  vanish if tl i s  not defined. 

As a resu t o  

- + T  A (tl) = (g + v”T ”) 
5 t=tl 

= o  aG -+T a $ + H  
) t=t 1 

at+” at 

t h i s  choice of A ( t )  equation (A8) -3 reduce1 t o  

0 

28 



For a s t a t iona ry  value of I 

a~ ? T  af ae= a e = O  

For minimum f u e l  consumption o r  under t h e  assumption of constant t h r u s t  f o r  

minimum time tl, G[q(tl),tl] = tl such t h a t  

(g)t=t 1 = 0 J 
For t h e  spec i f i c  case under consideration, t he  functions f bt) ,e”<t), t] 
a r e  

x = u  

y = v  

; = ‘p cos 0 
IJ. 

and t h e  boundary value cons t ra in ts  F? [9(tl),tl] a r e  

Y ( t l )  - Y1 = 0 

u p l )  - u1 = 0 

V(t1) - v1 = 0 

where x(tl)  is  allowed t o  be free. 

I 



Applying equation (Ag),  t h e  Euler-Lagrange equations are 

A, = 0 

A = o  2 

A2 A = -  
4 

Applying equation (Al.3) t o  obtain t h e  optimum control l a w s  

In tegra t ing  equations (A22) t o  (A23), and using the  r e s u l t s  i n  equa- 
t i o n  (A26) 

A 1 = c1 (A271 

The ref o r  e, 

A = c2 2 

A = c - Cl t  3 3  

A4 = c4 - C2t 

c4 - C 2 t  

c - Cl t  t a n  0 = 
3 

Applying equation ( AlO) , 

A2(t l )  = v2  

A (t ) = u 3  3 1 .  

A4(tl> = '4 



From equations (A32) and (A27) it i s  observed t h a t  t h e  constant C1 = 0.  

The optimum control  l a w  reduces t o  

One more boundary condition r e s u l t s  from t h i s  ana lys i s .  Applying 
equation (All) along with t h e  condition (Al.4) 



APPENDIX B 

IljTEGRATION OF A SET OF LINEARIZED DYNAMIC EQUATIONS I N  WATCH A CONSTANT 

THRUST A-ND A LINEAR TANGENT LAW OF STEERING; ARE ASSUMED 

Given a system of equations described by 

x = u  

y = v  

2 

= re cos 9 - 1 hn+l tn 
I-1 

n=O 

+ = Q s i n  IJ. 0 + l a  n+l  tn 
n=O 

c4 - C 2 t  
= z  

3 C t a n  8 = 

along with t h e  subs id ia ry  equations 

p l = 1 + I _ L t  

a =  itl ~ - .  

2 t a n  8 - t a n  e o  
1 

0 
a = 1 - a  t a n  9 1 

2 2 
k = y  + a 2  



it i s  required t o  in t eg ra t e  equations ( B l )  t o  (&) t o  obtain th ree  simultaneous 
algebraic  equations.  Rewriting equation (B4) ,  

2 - 
pdv - p 1 an+l t" d t  = 'p s i n  8 d t  

n =O 

where 

Equation (B13) i s  of t h e  form 

+ P ( t ) y  = Q(t) 

-2 
and has an in t eg ra t ing  f a c t o r  of p, . 
Dividipg equation ( B l 3 )  by k2 and noting the  exact d i f f e r e n t i a l  y ie lds  

The l e f t  s i d e  of t h e  equation in tegra ted  between t h e  bounds a t  t = 0 and 
t = tl i s  

33 
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The f i r s t  term on t h e  r i g h t  is  

The second term i s  

2 
q a 2  

2 
e dt 

= -s 
p t a n  eo  

a2'p 
0 

. -  - - - .. - - - - a k- 
1 

f 
+ K sec 8 

+ Ka2 (sec 8 0 - 

sec - - "2 

- "1 - a2 a1f2 sec 
- a k  1 

where t h e  following i d e n t i t i e s  a r e  t r u e :  

p ( t  = 0) = 1 

a f a t a n  el = p1 1 2  

a + a  tan8 = 1  1 2  0 

34 
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I- 

T:. ’ lcegral of equation ( ~ 1 6 )  i s  

P 

-112 - Ulk 

\, eo  - sec - I 

1 

J 

- A a2tl/% 

In tegra t ing  equation (B3)  

Using equation ( ~ 1 8 )  i n  (B17)  

where 

sec e 
+ Ka2(sec eo  - 

P1 

n=O 

Equations ( ~ 1 8 ) ,  ( B l g ) ,  and ( B l 3 )  evaluated a t  t h e  boundary t = t cons t i tu te  

t he  necessary th ree  algebraic  equations i n  t h e  th ree  unknowns tl’ 80,  and €I1. 
1 

35 
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APPENDIX C 

FIRST-ORDE=R P~WLEATION TECHNIQUE FOR THE SOLUTION 

OF TRANSCENDEKCAL EQUATIONS 

Given a system of a lgebraic  equations defined by 

where t h e  8 are a set of unknown variables ,  it i s  required t o  determine t h e  

unique s e t  of 8 such t h a t  equation ( C l )  i s  t r u e .  The f i r s t -o rde r  perturba- 

t i o n  eauation is: 

j 

where m def ines  t h e  order of correct ion.  

Define the  matrix 

i 
i j  = K  

J 

aF 
-3 A = a  

It i s  desired t h a t  

( F i ) m + l =  0 

Using equations ( C 3 )  and ( C 4 )  i n  ( C 2 )  and solving f o r  t h e  correct ion term 

The functions Fi(ej) a r e  defined as 

L J 



L n=O J 

p1  

8 + K sec 
e 1 + K sec e 0 )+  Ka2hec €Io - 
0 

where 

cl A = -( a pYO 0 - vo) + cp sec e 
2 

n=O 

a =  P t l  
2 t a n  el - t a n  eo 

a = 1 - a2 t a n  eo 1 

2 2 
k = a  + a  1 2 

K = - 1 

and the  8 described previously a re  tly eOy and €I1. 

( n / 2  < e < 3n/2) 

3 
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The p a r t i a l  der ivat ives  a i j  are 

k - a - a 2 K  kL’c sec 8, 1 

‘p“2 
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P 

0 k - Y - a 2 K k  sec 8 

2 (ul - uo + lfl P 7- ae, ak - ae, aa2) 
'p"2 

aa2 a A  
a22 = (v - 4% - "2 ae, 

t a n  8 + K sec 8 

t a n  eo + K sec eo 
1 + a sec e - p a l  -6 - uo + lf1j 

2 O 'pa2 
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where 

- "1 e 0 - + ( u l - u o + ~ l ) ~ 2 K -  'pa2 0 alae, "",I 

- uo + ql 

n+l  a t  n+l  1 
n + l  

n=O 

n+2 a t  n+l 1 02=i ( n+1) ( n+2 ) 
n=O 

. = l a  t n 
3 n+l  1 

n=O 

n=O 

-& = a@l 
1 



2 
2 

sec eo aa2 a 2 ae,=. 
W t l  

2 
2 - a  

sec el aa2 ae,= - itl 

+ cp sec eo t a n  8 0 IJ. 

aa2 
= - tan eo q 

2 
aa2 sec eo ae, = - tan 80 ae, - "2 

aa2 ae, = - tan eo ae, 

( c35) 



"2 2 % = 2(a2 - "1 t a n  eo> ae, - 2 5  u2 sec 

aa2 % = 2 6 2  - al tan " ) F  

O f  t h e  three var iab les  concerned, t,, eo, and el, only the  l a t te r  two re- - 
quire i n i t i a l  guesses t o  i n i t i a t e  t h e  solut ion.  A minimum value of time-to-go, 

tl, may be computed from t h e  following re la t ionship .  

t i c  ve loc i ty  is: 

The minimum character is-  

1 
( v )  = lAV1 = c log  - 

min e F P l )  

where AV i s  the change i n  the  t o t a l  ve loc i ty  and c i s  the  e f f ec t ive  exhaust 
ve loc i ty .  Now, 

5' Eliminating p from equations ((240) and (C41) and solving for  

One more point  requi res  de f in i t i on .  It i s  desired t h a t  t h e  functions 

be driven t o  0 by means of t he  correct ions 
dqj 

as s t a t ed  i n  equa- Fi (gj) 
t i o n  ((24). 
e r ro r s  t o l e ra t ed )  should be defined. Only one tolerance requires de f in i t i on  

s ince the  var iables  are r e l a t ed  by equations (C11). 

Since f o r  computers t h i s  method i s  impractical ,  tolerances (o r  

When the tolerance on 

time-to-go t, i s  defined as E,, t h e  following tolerances a re  derived: 

\ I 
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